
Connector cables

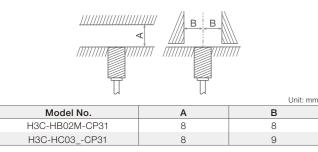
Appearance	Туре	Cable description	Cable dia.	Cores	Conductor area (mm ²)	Cable length	Model No.
		Vinyl-insulated cable,	+C 1		0.5	2m	PA5-4ISX2SK
	For DC	oil & vibration resistant (UL/NFPA79)	(UL/NFPA79) \$\phi_6.1		(108/0.08)	5m	PA5-4ISX5SK
	FOLDC	Polyurethane-insulated cable,	+0.0	4	0.5	2m	PA5-4ISX2CK
		high resistance to oil & vibration	ф6.0		(110/0.08)	5m	PA5-4ISX5CK

Adjustable Proximity Sensor Model H3C-H

Fastening the connector

Precautions for Use

(16)


Mutual interference prevention

If proximity sensors are installed side-by-side or facing each other, mutual interference will occur, resulting in malfunction. Maintain the minimum distances between sensors according to the table below.

-==		- Unit: mm
Model No.	A	В
H3C-HB02M-CP31	15	20
H3C-HC03CP31	20	30

• Effects from nearby metal objects

The presence of nearby metal objects other than the workpiece can affect the operating distance characteristics. Maintain the minimum distance shown in the table below between the sensor and any metal objects.

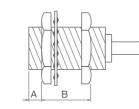
A: Distance from the proximity sensor's sensing surface to an iron plate in front of the sensor

B: Distance from the proximity sensor's axis to an iron plate in front of the sensor

Please read "Terms and Conditions" from the following URL before ordering and use https://www.azbil.com/products/factory/order.html

Other product names, model numbers and company names may be trademarks of the respective company.

Azbil Corporation Advanced Automation Company


1-12-2 Kawana, Fujisawa

Kanagawa 251-8522 Japan URL: https://www.azbil.com

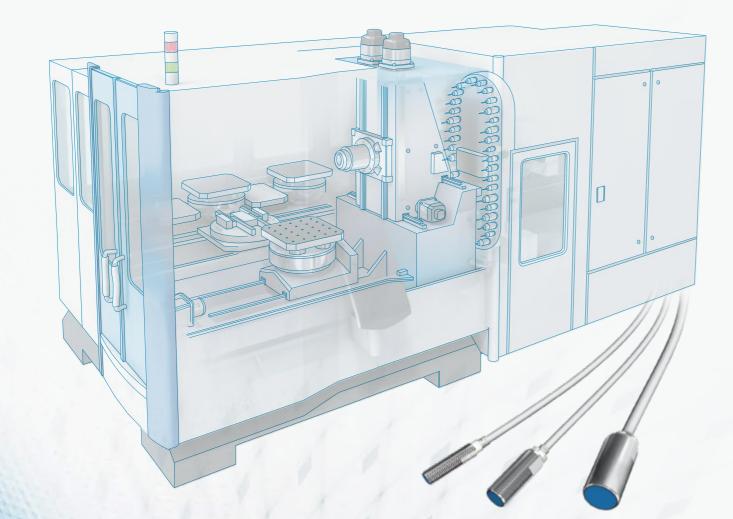
1st Edition: Mar. 2020-SO 2nd Edition: Apr. 2021-SO

• Tightening torque

Use the supplied nuts and toothed washers for installation. The maximum tightening torque of the nuts varies depending on the distance from the sensor head. The maximum tightening torgue is indicated in the table below. When tightening, do not hold or turn the indicator (plastic part). The maximum tightening torque can vary depending on the materials and surface conditions of the mounting plates, mounting housings, nuts, washers, and other parts used for the sensor. Check in advance that the torque is appropriate for the actual combination of parts used.

Model No.	A (mm)	Allowable tightening torque (N·m)
H3C-HB02M-CP31	0	-
H3C-HC03CP31	10	20
Model No.	B (mm)	Allowable tightening torque (N·m)
H3C-HB02M-CP31	28	8
H3C-HC03 -CP31	22	30

[Notice] Specifications are subject to change without notice. No part of this publication may be reproduced or duplicated without the prior written permission of Azbil Corporation.


at the desired sensing position can be set easily.

Using a teaching method, the threshold level

Azbil Corporation

A proximity switch that exceeds expectations. Easy setup by anyone, and reliable workpiece sensing

Automatic tuning sets the optimal set point using teaching of the workpiece detection level, eliminating variation in operation between sensors, and improving the equipment's operating rate.

Adjustable **Proximity Sensor**

Adjustable Proximity Sensor Model H3C-H

Feature

Using the 2 outputs, sensing in 4 areas

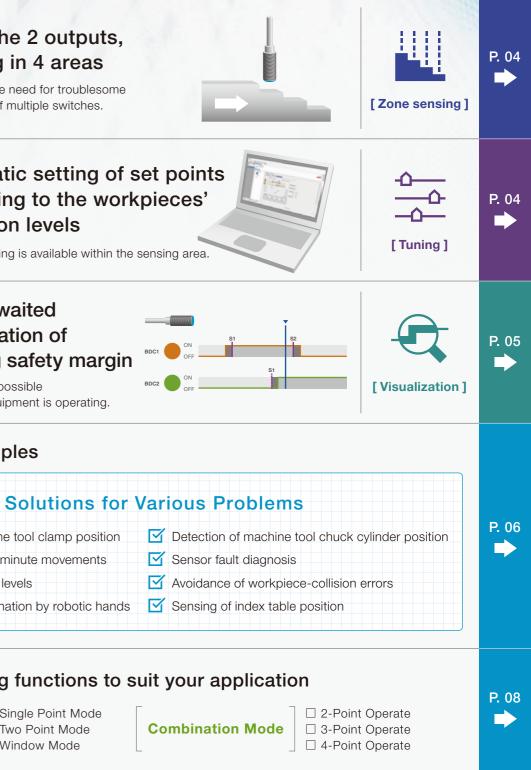
Eliminates the need for troublesome positioning of multiple switches.

Automatic setting of set points according to the workpieces' detection levels

ON/OFF setting is available within the sensing area.

Long-awaited visualization of sensing safety margin

Checking is possible while the equipment is operating


Application examples

Detection of machine tool clamp position Reliable sensing of minute movements Monitoring of liquid levels Workpiece discrimination by robotic hands

A variety of tuning functions to suit your application

Single Point Mode **Standard Mode** □ Two Point Mode □ Window Mode

Sensing of 4 areas is done by a combination of the operational logic and operational modes of outputs 1 (BDC1) and 2 (BDC2). A single switch does the work of multiple units, saving space and significantly cutting adjustment man-hours. This reduces the need for troublesome adjustment of the position of multiple switches.

Feature

3500

3000

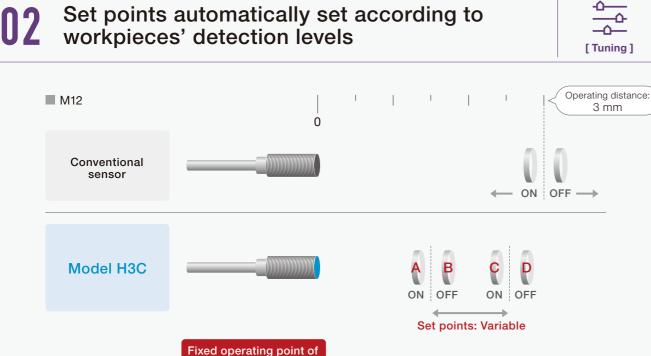
2500

2000

1500

1000

500


0

1

2

3

4

conventional sensor

Adjustable set point

according to sensing level

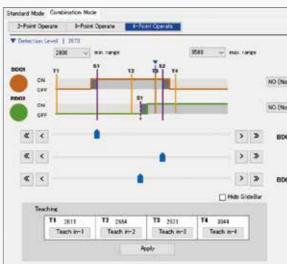
6

7

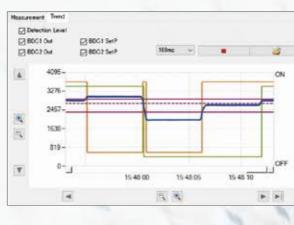
8 9

Sensing level B

Sensing level A


5

Distance (mm)


A dedicated setting tool*1 can be used for easy setting according to the application. Because conventional proximity switches have a fixed operating point, there are problems with adjusting the switch's position and available installation space. With the H3C, the set point can be set anywhere within the operating range, allowing easy adjustment of settings in order to sense minute changes, etc.

Feature 03 Long-awaited visualization of sensing safety margin

The dedicated setting tool helps check the proximity switch's positional accuracy and safety margin for sensing (excess gain). Conventional proximity switches' LED indicators show only that they are operating, but the excess gain cannot be checked. The H3C's dedicated setting tool*1 shows the set points and current positions on-screen while the equipment is operating. Set points can be fine-tuned as necessary.

naity Open) 🦂	1
ally Close) ~	al ¹²
SetP.S I	2353
52	2933
SetP.S1	2741

Point 01

Teaching of each workpiece's detection level helps to automatically set the optimal set point (threshold level). Also, fine-tuning can be done with a convenient adjustor.

Point 02

Detection levels and corresponding set points (threshold levels) can be checked while the equipment is operating, which allows the safety margin for sensing to be seen.

Point 03

The behavior of the sensor during trial operation can be viewed on a graph.

In addition to displaying the current detection levels, the graph can also show outputs and set points (threshold levels) at the same time.

Sample Uses

Sensing of main spindle tool clamp position

With multiple proximity switches, tool clamp position can be detected.

Common problems

- Adjusting switch positions takes a long time.
- Adjustment results vary depending on the worker.
- After setup, the amount of excess gain is unknown.

A single H3C unit (with 2 outputs) can detect the tool clamp position.

- It is necessary only to adjust the setting distances of the switches. (Less adjustment work)
- The detection levels for the clamp position in each state are written to the sensors, and optimal set points are automatically set. [Less variation among workers]
- The safety margin for sensing after setup can be monitored with the dedicated setting tool, and fine-tuning can be done on the tool' s screen. Excess gain can be fine-tuned

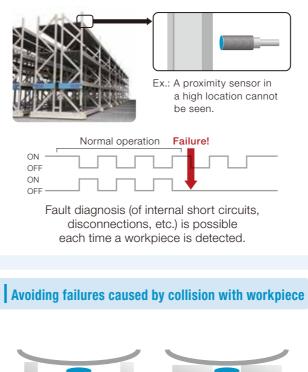
	-

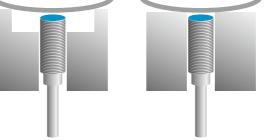
Common problems

- When retooling, workpiece size (dia.) often changes, requiring readjustment of switch position.
- Retooling takes many man-hours, affecting the operating rate.

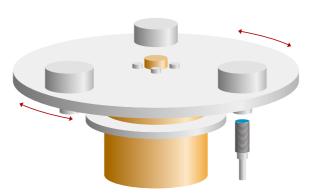
A single H3C unit (with 2 outputs) can detect tool clamp positions.

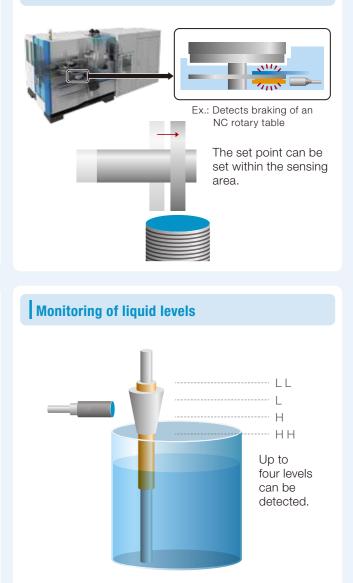
- Tapered dog allows setting a large clamp area for a workpiece, eliminating the need to change the dog position when retooling. [Less retooling work]
- This enables the machine to operate continuously.
 Improved operating rate



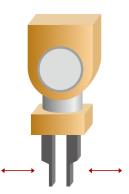

Detection of chuck cylinder positions

Two proximity switches detect the cylinder stroke position.


Sensor failure detection with two inverted ON/OFF outputs


By cancelling interference from nearby metal, sensor can be positioned to avoid collisions.

Sensing index table positions



Up to three positions can be identified.

Reliable sensing of minute movements

Workpiece discrimination by robotic hands

Different workpieces can be identified with settings for each workpiece size.

A variety of tuning functions to suit your application

Standard mode

This function sets the set point (threshold level) of output 1 (BDC1) or output 2 (BDC2) as well as the operational mode.

	[Single Value Teach]	Sets the set point (threshold level) to the value obtained by multiplying the teach point and the setting ratio (10 to 200%).
Single Point Mode	[Two Value Teach]	Sets the set point to the midpoint of the two teach points.
	[Dynamic Teach]	Sets the set point to the midpoint of the maximum and the minimum sensing levels of a moving workpiece in the interval from teach start to teach stop.
Two Point Mode	[Single Value Teach]	Sets ON and OFF at two teach points.
Window Mode	[Single Value Teach]	Sets the threshold levels to two teach points. (Sets the window width.)

Combination mode

2-Point Operate

Patent pending

This function simultaneously sets the set points (threshold levels) of two outputs (BDC1 and BDC2) as well as the operational mode.

Simultaneously sets the set points of outputs 1 and 2 to the midpoint of the two teach points.

3-Point Operate	Simultaneously sets the set point of output 1 to the midpoint of teach points 1 and 2, and the set point of output 2 to the midpoint of teach points 2 and 3.
4-Point Operate	Simultaneously sets the set point of output 1 (S1) to the midpoint of teach points 1 and 2, the set point of output 2 (S1) to the midpoint of teach points 2 and 3, and the set point of output 1 (S2) to the midpoint of

Near \leftarrow Position of the target object \rightarrow Far Position of the target object Standard Mode Single Point Mode ON OFF Two Point Mode OFF BDC1/BDC2 (NO) ON OFF Window Mode ON OFF **Combination Mode** BDC1 (NO) ON OFF 2-Point Operate OFF BDC2 (NC) ON OFF ON BDC1 (NO) 3-Point Operate BDC2 (NC) OFF ON

Ν	$^{\circ}$	~~	۰.
1 1	υι	65	٥.

4-Point Operate

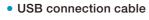
Model H3C can be configured with the dedicated tool (model H3Z-DTM-00: dedicated DTM). For details on the tuning functions, refer to the operation manual (CP-SP-1452).

BDC1 (NO)

BDC2 (NC)

teach points 3 and 4.

The dedicated tool (model H3Z-DTM-00) can be downloaded from URL(https://www.azbil.com/).


Tuning equipment components

OFF

OFF

• PC (with a USB port)

OFF

ON

ON

Model Nos.

Appearance		Consing distance	Connection method	Operation legie	Туре
Shape	Outer diameter	Sensing distance	Connection method	Operation logic	PNP output
	M8	2 mm	M12 pre-wired ON/OFF connector (300 mm) switchable	M12 pre-wired ON/OFF	H3C-HB02M-CP31
	M12	3 mm		switchable	H3C-HC03_*2-CP31

Note: Price not yet determined. Please contact our nearest branch or sales office. Note 2: The box (_) may be M (standard adjustable model), R (2-area preset model), or S (3-area preset model).

Specifications

Size		M8 M12			
Model No.		H3C-HB02M-CP31	H3C-HC03M-CP31	H3C-HC03R-CP31	H3C-HC03S-CP31
Sensing method		High-frequency oscillation			
Rated voltage		24 V DC			
Operating voltage range			10-30 V DC (in	icl. 10 % ripple)	
Rated sensing distance		2 mm	2 mm 3 mm		
Operating distance (C/Q ou	itput)*1	2 mm±10%	3 mm±10%	3 mm±10%	2.5 mm±10%
Operating distance (DO)*1		1.6 mm±10%	2.4 mm±10%	3 mm±10%	1.5 mm±10%
Sensing range*2			Zero to the rated	sensing distance	
Standard target		8 × 8 × 1 mm iron		$12 \times 12 \times 1$ mm iron	
Differential travel			15 % max. of the	operating distance	
Operation state	C/Q output	N.O./N.C. switchable ty	pe (factory default: N.O.)	N.O./N.C. switchable typ	pe (factory default: N.O
(operation logic)*1	DO output	N.O./N.C. switchable ty	pe (factory default: N.O.)	N.O./N.C. switchable ty	pe (factory default: N.C
Operation mode*1		Single point mode / two po	int mode / window mode / ope	eration stop switchable (factor	y default: single point mod
Output state		PNP open collector (output device: P-MOS FET)			
Control output		Switching current: 50 mA or less; residual voltage: 1 V or lower; output dielectric strength: 30 V DC			
Response frequency		1 kHz			
Temperature characteristic	S	±10 % max. of the operating distance (+25 °C) (-25 to +60 °C)			
Indicators*3		Standard I/O mode (SIO mode): lit orange during C/Q (BDC1) output Lit green during DO (BDC2) output			
		IO-Link mode: lit orange during BDC1:1 Blinking green (cycle: 1 s)			
Ambient operating tempera	ature	-25°C~+60°C			
Ambient storage temperatu	ire	-25°C~+70°C			
Ambient operating humidity	/	35~95%RH			
Insulation resistance		$50M\Omega$ min. (500 V DC) between live parts and case			
Dielectric strength		500 V AC min., 50/60 Hz for 1 min, between live parts and case			
Vibration resistance		10 to 55 Hz, 1.5 mm in peak-to-peak amplitude, for 2 h in the X, Y, and Z directions			
Shock resistance		490 m/s ² , 10 times in each of X, Y, and Z directions			
Protection level		IP67 (IEC standard)			
Circuit protection		Reverse connection protection, surge absorption, load short circuit protection			

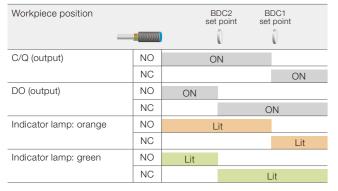
Specifications of IO-Link communication

	IO-Link version	IO-Link protocol version Ver1.1
specifications	Transmission speed	COM3 (230.4kbps)
	Data length	PD size: 2 bytes, OD size: 1 byte (M-sequence type: TYPE_2_2)
	Minimum cycle time	1ms

External standards

EMC Directive			
EMC standard: EN 60947-5-2			
EMS (electromagnetic susceptibility)			
Electrostatic discharge immunity			
Electromagnetic radiation immunity	3V/m 80MHz~		
Fast transient immunity			
Conductive noise immunity			
EMI (electromagnetic interference)			
Emissions requirements			

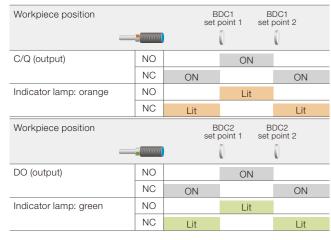
KC Mark


KC Mark (Korean Wireless Telegraphy Act) compliant

Contact discharge 4 kV (IEC 61000-4-2) ~1GHz, 1.4GHz~2GHz 1V/m 2GHz~6GHz (IEC 61000-4-3) 2kV/5kHz (IEC 61000-4-4) 3V 150kHz~80MHz (IEC 61000-4-6)

Group 1, Class A (CICPR11)

Note: For output indicators for the 2-area preset model (R) and 3-area preset model (S), please contact our branch or sales office.


Single point mode SIO (standard I/O)

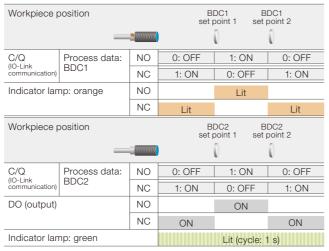
• The C/Q output and the orange indicator turn on according to the set point and N.O./N.C.

 The C/Q output and the orange indicator turn on according to the set point and N.O./N.C. setting
 The DO output and the green indicator turn on according to the set point and N.O./N.C. setting for BDC2.

Window mode SIO (standard I/O)

Note:
The C/Q output and the orange indicator turn on according to set point 1, set point 2, and the N.O./N.C. setting for BDC1.
The DO output and the green indicator turn on according to set point 1, set point 2, and the N.O./N.C. setting for BDC2.

Single point mode IO-Link communication

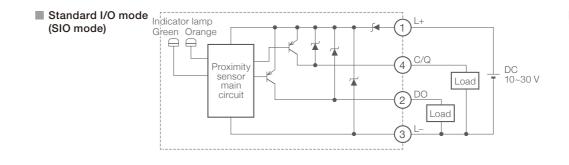

Workpiece p	position				DC1 point		
C/Q (IO-Link communication)	Process data: BDC1	NO	1: ON			0: OFF	
		NC	0: OFF			1: ON	
	Process data: BDC2	NO	1: ON	0: OFF)FF	
		NC	0: OFF		1: ON		
DO (output)		NO	ON				
		NC			0	N	
Indicator lamp: orange		NO	Lit				
		NC				Lit	
Indicator lamp: green			Lit (cycle: 1 s)				

 Detection is carried out according to the set point and N.O./N.C. setting for BDC1; the resulting data is output to the specified process data bits; and then the indicator (orange) turns on in

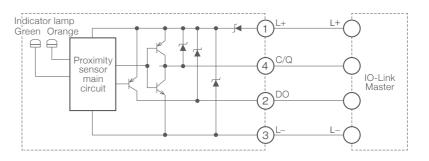
The DO output turns on according to the set point and N.O./N.C. setting for BDC2. (The

indicator is not synchronized.) • During IO-Link communication, the indicator lamp (green) blinks.

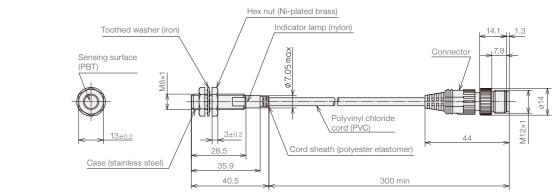
Window mode IO-Link communication

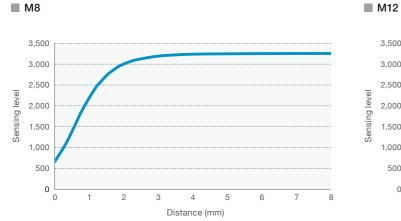


Note

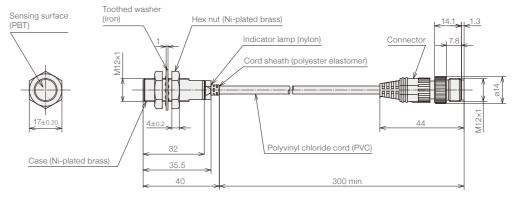

Detection is carried out according to set point 1, set point 2, and the N.O./N.C. setting for BDC1; the resulting data is output to the specified process data bits; and then the indicator (orange) turns on in sync.

• The DO output turns on according to set point 1, set point 2, and the N.O./N.C. setting for BDC2. (The indicator is not synchronized.) • During IO-Link communication, the indicator (green) blinks.




IO-Link communication mode (COM mode)

External dimensions


Sensing level (standard target: typical cases in head-on operation)

M8

Connector pin layout

